Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(652): eabn1926, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35857626

RESUMO

Triple-negative breast cancer (TNBC) and ovarian carcinomas (OvCas) with BRCA1 promoter methylation (BRCA1meth) respond more poorly to alkylating agents compared to those bearing mutations in BRCA1 and BRCA2 (BRCAmut). This is a conundrum given the biologically equivalent homologous recombination deficiency (HRD) induced by these genetic and epigenetic BRCA perturbations. We dissected this problem through detailed genomic analyses of TNBC and OvCa cohorts and experimentation with patient-derived xenografts and genetically engineered cell lines. We found that despite identical downstream genomic mutational signatures associated with BRCA1meth and BRCAmut states, BRCA1meth uniformly associates with poor outcomes. Exposure of BRCA1meth TNBCs to platinum chemotherapy, either as clinical treatment of a patient or as experimental in vivo exposure of preclinical patient derived xenografts, resulted in allelic loss of BRCA1 methylation and increased BRCA1 expression and platinum resistance. These data suggest that, unlike BRCAmut cancers, where BRCA loss is a genetically "fixed" deficiency state, BRCA1meth cancers are highly adaptive to genotoxin exposure and, through reversal of promoter methylation, recover BRCA1 expression and become resistant to therapy. We further found a specific augmented immune transcriptional signal associated with enhanced response to platinum chemotherapy but only in patients with BRCA-proficient cancers. We showed how integrating both this cancer immune signature and the presence of BRCA mutations results in more accurate predictions of patient response when compared to either HRD status or BRCA status alone. This underscores the importance of defining BRCA heterogeneity in optimizing the predictive precision of assigning response probabilities in TNBC and OvCa.


Assuntos
Carcinoma , Neoplasias Ovarianas , Neoplasias de Mama Triplo Negativas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Epigenômica , Feminino , Genômica , Humanos , Mutação/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Platina/farmacologia , Platina/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
2.
Transl Oncol ; 20: 101407, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35381525

RESUMO

Brain tumors are the leading cause of cancer-related deaths in children. Tailored therapies need preclinical brain tumor models representing a wide range of molecular subtypes. Here, we adapted a previously established brain tissue-model to fresh patient tumor cells with the goal of establishing3D in vitro culture conditions for each tumor type.Wereported our findings from 11 pediatric tumor cases, consisting of three medulloblastoma (MB) patients, three ependymoma (EPN) patients, one glioblastoma (GBM) patient, and four juvenile pilocytic astrocytoma (Ast) patients. Chemically defined media consisting of a mixture of pro-neural and pro-endothelial cell culture medium was found to support better growth than serum-containing medium for all the tumor cases we tested. 3D scaffold alone was found to support cell heterogeneity and tumor type-dependent spheroid-forming ability; both properties were lost in 2D or gel-only control cultures. Limited in vitro models showed that the number of differentially expressed genes between in vitro vs. primary tissues, are 104 (0.6%) of medulloblastoma, 3,392 (20.2%) of ependymoma, and 576 (3.4%) of astrocytoma, out of total 16,795 protein-coding genes and lincRNAs. Two models derived from a same medulloblastoma patient clustered together with the patient-matched primary tumor tissue; both models were 3D scaffold-only in Neurobasal and EGM 1:1 (v/v) mixture and differed by a 1-mo gap in culture (i.e., 6wk versus 10wk). The genes underlying the in vitrovs. in vivo tissue differences may provide mechanistic insights into the tumor microenvironment. This study is the first step towards establishing a pipeline from patient cells to models to personalized drug testing for brain cancer.

3.
J Mol Med (Berl) ; 100(2): 323-335, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013752

RESUMO

Whole transcriptome sequencing (RNA-Seq) has gained prominence for the detection of fusions in solid tumors. Here, we describe the development and validation of an in-house RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions, in formalin-fixed paraffin-embedded (FFPE) specimens, using seventy tumor samples with varying fusion status. Conditions were optimized for RNA input of 50 ng, shown to be adequate to call known fusions at as low as 20% neoplastic content. Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability. Performance analysis of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility. This clinically developed and validated RNA-Seq-based approach for fusion detection in FPPE samples was shown to be on par if not superior to off-the-shelf commercially offered assays. With gene fusions implicated in a variety of cancer types, offering high-quality, low-cost molecular testing services for FFPE specimens will serve to best benefit the patient and the advancement of precision medicine in molecular oncology. KEY MESSAGES: A custom RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions, Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability. The assay can be performed with low RNA input and neoplastic content. Performance characteristics of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility.


Assuntos
Fusão Gênica , Neoplasias/genética , RNA-Seq , Bioensaio , Humanos
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385332

RESUMO

Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-ß superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous Fst, we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density. Moreover, by employing a genetic strategy to target Fst expression only in the posterior (caudal) region of the animal, we show that the effects of Fst loss are mostly restricted to the posterior region, implying that locally produced FST plays a much more important role than circulating FST with respect to regulation of muscle and bone. Finally, we show that targeting receptors for these ligands specifically in osteoblasts leads to dramatic increases in bone mass, with trabecular bone volume fraction being increased by 12- to 13-fold and bone mineral density being increased by 8- to 9-fold in humeri, femurs, and lumbar vertebrae. These findings demonstrate that bone, like muscle, has an enormous inherent capacity for growth that is normally kept in check by this signaling system and suggest that the extent to which this regulatory mechanism may be used throughout the body to regulate tissue mass may be more significant than previously appreciated.


Assuntos
Desenvolvimento Ósseo/fisiologia , Folistatina/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Fator de Crescimento Transformador beta/metabolismo , Alelos , Animais , Densidade Óssea , Folistatina/genética , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Heterozigoto , Homeostase , Camundongos , Família Multigênica , Transdução de Sinais , Fator de Crescimento Transformador beta/genética
5.
Proc Natl Acad Sci U S A ; 117(38): 23942-23951, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900939

RESUMO

Among the physiological consequences of extended spaceflight are loss of skeletal muscle and bone mass. One signaling pathway that plays an important role in maintaining muscle and bone homeostasis is that regulated by the secreted signaling proteins, myostatin (MSTN) and activin A. Here, we used both genetic and pharmacological approaches to investigate the effect of targeting MSTN/activin A signaling in mice that were sent to the International Space Station. Wild type mice lost significant muscle and bone mass during the 33 d spent in microgravity. Muscle weights of Mstn-/- mice, which are about twice those of wild type mice, were largely maintained during spaceflight. Systemic inhibition of MSTN/activin A signaling using a soluble form of the activin type IIB receptor (ACVR2B), which can bind each of these ligands, led to dramatic increases in both muscle and bone mass, with effects being comparable in ground and flight mice. Exposure to microgravity and treatment with the soluble receptor each led to alterations in numerous signaling pathways, which were reflected in changes in levels of key signaling components in the blood as well as their RNA expression levels in muscle and bone. These findings have implications for therapeutic strategies to combat the concomitant muscle and bone loss occurring in people afflicted with disuse atrophy on Earth as well as in astronauts in space, especially during prolonged missions.


Assuntos
Ativinas/metabolismo , Reabsorção Óssea/metabolismo , Músculo Esquelético/metabolismo , Miostatina , Voo Espacial , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atrofia Muscular/metabolismo , Miostatina/genética , Miostatina/metabolismo , Transdução de Sinais
6.
Cancer Genet ; 242: 25-34, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31992506

RESUMO

Molecular features of gynecologic cancers have been investigated in comprehensive studies, but correlation of these molecular signatures with clinical significance for precision medicine is yet to be established. Towards this end, we evaluated 95 gynecologic cancer cases submitted for testing using The JAX ActionSeq™ NGS panel. Molecular profiles were studied and compared to TCGA datasets to identify similarities and distinguishing features among subtypes. We identified 146 unique clinically significant variants (Tier I and II) across 45 of the 212 genes (21%), in 87% (83/95) of cases. TP53, PTEN, ARID1A, PIK3CA and ATM were the most commonly mutated genes; CCNE1 and ERBB2 amplifications were the most frequently detected copy-number alterations. PARP inhibitors were among the most commonly reported drug class with clinical trials, consistent with the frequency of DNA damage-response pathway mutations in our cohort. Overall, our study provides additional insight into the molecular profiles of gynecologic cancers, highlighting regulatory pathways involved, raising the potential implications for targeted therapeutic options currently available.


Assuntos
Neoplasias dos Genitais Femininos/genética , Mutação , Guias de Prática Clínica como Assunto , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Ciclo Celular/genética , Estudos de Coortes , Variações do Número de Cópias de DNA , Reparo do DNA/genética , DNA de Neoplasias/genética , Conjuntos de Dados como Assunto , Feminino , Amplificação de Genes , Frequência do Gene , Genes Neoplásicos , Neoplasias dos Genitais Femininos/tratamento farmacológico , Neoplasias dos Genitais Femininos/patologia , Fidelidade a Diretrizes , Humanos , Pessoa de Meia-Idade , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Medicina de Precisão/métodos , Estudos Retrospectivos
7.
J Clin Neurosci ; 71: 311-315, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31859178

RESUMO

The World Health Organization (WHO) has defined more than 130 distinct central nervous system (CNS) tumor entities, of which glioblastoma is the most fatal primary brain tumor. However, the correlation of the molecular signatures of glioblastoma with clinical significance for precision medicine is not well-known. How, and to what extent these variants may affect clinical decision making remains uncertain. Here, we evaluate 48 glioblastomas submitted for testing using the JAX ActionSeq™ Next-generation sequencing (NGS) panel. We identified 131 clinically significant variants (Tier I and II) across 30 of the 212 genes (14%). TP53, EGFR, PTEN, IDH1 were the most commonly mutated genes; EGFR, CDK4 amplifications, and CDKN2A deletion were the most frequently detected copy-number alterations. CDK4/6 and PI3K inhibitors were among the most commonly reported drug class with FDA approved therapies and investigational therapies, which is consistent with the frequencies of these genes in our cohort. Overall, our study established the molecular profiles of glioblastoma based on the 2017 joint consensus guidelines by AMP/ASCO/CAP and provides the potential implications for targeted therapeutic options currently available.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Glioblastoma/genética , Medicina de Precisão/métodos , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Estudos Retrospectivos
8.
Mol Diagn Ther ; 24(1): 103-111, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31754995

RESUMO

OBJECTIVE: The study aimed to retrospectively evaluate the positive yield rate of a custom 212-gene next-generation sequencing (NGS) panel, the JAX ActionSeq™ assay, used in molecular profiling of solid tumors for precision medicine. METHODS: We evaluated 261 cases tested over a 24-month period including cancers across 24 primary tissue types and report on the mutation yield in these cases. RESULTS: Thirty-three of the 261 cases (13%) had no detectable clinically significant variants. In the remaining 228 cases (87%), we identified 550 clinically significant variants in 88 of the 212 genes, with four of fewer clinically significant variants being detected in 62 of 88 genes (70%). TP53 had the highest number of variants (125), followed by APC (47), KRAS (47), ARID1A (20), PIK3CA (20) and EGFR (18). There were 38 tier I and 512 tier II variants, with two genes having only a tier I variant, seven genes having both a tier I and tier II variant, and 79 genes having at least one tier II variant. Overall, the ActionSeq™ assay detected clinically significant variants in 42% of the genes included in the panel (88/212), 68% of which (60/88) were detected in more than one tumor type. CONCLUSIONS: This study demonstrates that of the genes with documented involvement in cancer, only a limited number are currently clinically significant from a therapeutic, diagnostic and/or prognostic perspective.


Assuntos
Biomarcadores Tumorais , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Medicina de Precisão/métodos , Prognóstico , Transcriptoma
9.
Proc Natl Acad Sci U S A ; 116(18): 9030-9039, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30910981

RESUMO

Cellular senescence is a form of adaptive cellular physiology associated with aging. Cellular senescence causes a proinflammatory cellular phenotype that impairs tissue regeneration, has been linked to stress, and is implicated in several human neurodegenerative diseases. We had previously determined that neural progenitor cells (NPCs) derived from induced pluripotent stem cell (iPSC) lines from patients with primary progressive multiple sclerosis (PPMS) failed to promote oligodendrocyte progenitor cell (OPC) maturation, whereas NPCs from age-matched control cell lines did so efficiently. Herein, we report that expression of hallmarks of cellular senescence were identified in SOX2+ progenitor cells within white matter lesions of human progressive MS (PMS) autopsy brain tissues and iPS-derived NPCs from patients with PPMS. Expression of cellular senescence genes in PPMS NPCs was found to be reversible by treatment with rapamycin, which then enhanced PPMS NPC support for oligodendrocyte (OL) differentiation. A proteomic analysis of the PPMS NPC secretome identified high-mobility group box-1 (HMGB1), which was found to be a senescence-associated inhibitor of OL differentiation. Transcriptome analysis of OPCs revealed that senescent NPCs induced expression of epigenetic regulators mediated by extracellular HMGB1. Lastly, we determined that progenitor cells are a source of elevated HMGB1 in human white matter lesions. Based on these data, we conclude that cellular senescence contributes to altered progenitor cell functions in demyelinated lesions in MS. Moreover, these data implicate cellular aging and senescence as a process that contributes to remyelination failure in PMS, which may impact how this disease is modeled and inform development of future myelin regeneration strategies.


Assuntos
Senescência Celular/fisiologia , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Células-Tronco Neurais/fisiologia , Animais , Axônios/patologia , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Proteômica/métodos , Ratos , Remielinização/fisiologia
10.
Biomark Insights ; 14: 1177271919826545, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745794

RESUMO

The standard of care in oncology has been genomic profiling of tumor tissue biopsies for the treatment and management of disease, which can prove to be quite challenging in terms of cost, invasiveness of procedure, and potential risk for the patient. As the number of available drugs in oncology continues to increase, so too does the demand for technologies and testing applications that can identify genomic alterations targetable by these new therapies. Liquid biopsies that use a blood draw from the diseased patient may offset the many disadvantages of the invasive procedure. However, as with any new technology or finding in the clinical field, the clinical utility of an analytical test such as that of the liquid biopsy has to be established. Here, we review the clinical testing space for liquid biopsy offerings and elucidate the technical and regulatory considerations to develop such an assay, using our recently validated PlasmaMonitorTM test.

11.
Interdiscip Sci ; 7(3): 242-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26199209

RESUMO

16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). Its most important advantage over the traditional biochemical characterization methods is that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna district, Vijayawada, Andhra Pradesh, India. Subsequently, the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species was concluded to be a novel, Probiotic L. acidophilus bacteria, further which were named L. acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.


Assuntos
Lactobacillus acidophilus/genética , Lactobacillus acidophilus/isolamento & purificação , Probióticos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase
12.
Interdiscip Sci ; 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25239515

RESUMO

16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). It's most important advantage over the traditional biochemical characterization methods are that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna District, Vijayawada, Andhra Pradesh, India. Subsequently the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species were concluded to be a novel, Probiotic Lactobacillus acidophilus bacteria, further which were named Lactobacillus acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...